Week 11, Day 3
 Multiplication

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding.
Fold the page to hide the answers!
```
Identify the value of the '4' in the following numbers:
(a) 3.407
(b) }4.82
(c) 0.043
(d) 5.104
(e) 48,739

\section*{Learning Reminders}

© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

\section*{Learning Reminders}


\section*{Practice Sheet Mild}
How much?

Have a go at recording each as a multiplication sentence.

How much would these cost?
1) 2 blue bears
2) 4 green bears
3) 6 red bears
4) 5 blue bears
5) 3 green bears
6) 4 red bears
© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton


\section*{Practice Sheet Answers}

\section*{Practice Sheet (Mild)}
\begin{tabular}{lll} 
1) & 2 blue bears & \(2 \times 2 p=4 p\) \\
2) & 4 green bears & \(4 \times 5 p=20 p\) \\
3) & 6 red bears & \(6 \times 10 p=60 p\) \\
4) & 5 blue bears & \(5 \times 2 p=10 p\) \\
5) & 3 green bears & \(3 \times 5 p=15 p\) \\
6) & 4 red bears & \(4 \times 10 p=40 p\)
\end{tabular}

\section*{Practice Sheet (Hot)}
\begin{tabular}{lll} 
1) & 2 blue bears & \(2 \times 2 p=4 p\) \\
2) & 4 green bears & \(4 \times 5 p=20 p\) \\
3) & 6 red bears & \(6 \times 10 p=60 p\) \\
4) & 5 blue bears & \(5 \times 2 p=10 p\) \\
5) & 3 green bears & \(3 \times 5 p=15 p\) \\
6) & 4 red bears & \(4 \times 10 p=40 p\) \\
7) & 7 blue bears & \(7 \times 2 p=14 p\) \\
8) & 8 green bears & \(8 \times 5 p=40 p\) \\
9) & 9 red bears & \(9 \times 10 p=90 p\) \\
10) & 10 blue bears & \(10 \times 2 p=20 p\)
\end{tabular}

\section*{Challenge}

How many red bears would cost \(£ 1\) ? 10 red bears would cost \(£ 1\).
How many green bears would cost \(£ 1\) ? 20 green bears would cost \(£ 1\). How many blue bears would cost \(£ 1\) ? 50 blue bears would cost \(£ 1\).

\section*{Work in pairs}

\section*{A Bit Stuck?}

\section*{Give me five}

Things you will need:
- A set of hands cards
- A glue stick
- A pencil

\section*{What to do:}
- Spread the cards out. Choose one.
- Count in fives to find out how many fingers there are.
- Stick the card on a piece of paper.
- Write the number of fingers underneath.
- Repeat for as many cards as you can.


S-t-r-e-t-c-h:
Write the missing numbers in this sequence:
5, 10, 15, \(\qquad\) 25, 30, \(\qquad\) 40, 45 \(\qquad\) \(55,60,65,70,75\) \(\qquad\) 85, 90, 95, 100.

\section*{Learning outcomes:}
- I can count in 5 s to at least 50.
- I am beginning to write missing numbers in the sequence made by counting in 5 s .

\section*{A Bit Stuck? Give me five}

© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton \({ }^{\text {® }}\)

\section*{Check your understanding: \\ Questions}

James has five of each coin in three separate piles.
2 ps 5ps 10ps
How much does he have in each pile?

Write < or > or = to complete each sentence.
(a) \(4 \times 5 \square 2 \times 10\)
(b) \(10 \times 2 \square 3 \times 10\)
(c) \(3 \times 5 \square 8 \times 2\)

Fold here to hide answers:

\section*{Check your understanding:}

\section*{Answers}

James has five of each coin in three separate piles.
2 ps 5ps 10ps
How much does he have in each pile?
10 p, 25 p and 50 p respectively. Children should be counting on in \(2 s, 5\) s or 10 s to find the answer.

Write < or > or = to complete each sentence.
(a) \(4 \times 5=2 \times 10\)
(b) \(10 \times 2<3 \times 10\)
(c) \(3 \times 5<8 \times 2\)

Note that at this stage, children are likely to be counting on in \(2 \mathrm{~s}, 5 \mathrm{~s}\) or 10 s to evaluate each side of the equation (rather than recalling times tables facts). Children who are struggling can check by counting on in \(2 \mathrm{~s}, 5\) s or 10 s on a number line.```

